Loading Data with HyperSpy#

This example demonstrates how to load and visualize data using the HyperSpy library.

import hyperspy.api as hs
from em_database.data import BilayerWS2

# Load a dataset using HyperSpy
dataset = BilayerWS2()
data_path = dataset.download()  # Download the dataset if not already available
data = hs.load(data_path)
data
  0%|                                              | 0.00/12.5M [00:00<?, ?B/s]
  0%|                                      | 41.0k/12.5M [00:00<00:44, 278kB/s]
  1%|▎                                     | 98.3k/12.5M [00:00<00:30, 409kB/s]
  2%|▋                                      | 205k/12.5M [00:00<00:18, 660kB/s]
  3%|█▎                                    | 434k/12.5M [00:00<00:09, 1.23MB/s]
  7%|██▋                                   | 893k/12.5M [00:00<00:05, 2.30MB/s]
 14%|█████▎                               | 1.80M/12.5M [00:00<00:02, 4.39MB/s]
 18%|██████▋                              | 2.25M/12.5M [00:00<00:02, 3.93MB/s]
 21%|███████▉                             | 2.66M/12.5M [00:00<00:02, 3.66MB/s]
 24%|█████████                            | 3.04M/12.5M [00:01<00:03, 2.65MB/s]
 27%|█████████▉                           | 3.35M/12.5M [00:01<00:04, 2.08MB/s]
 29%|██████████▋                          | 3.60M/12.5M [00:01<00:06, 1.34MB/s]
 30%|███████████▏                         | 3.79M/12.5M [00:02<00:06, 1.25MB/s]
 32%|████████████                          | 3.96M/12.5M [00:02<00:10, 837kB/s]
 33%|████████████▍                         | 4.08M/12.5M [00:02<00:10, 787kB/s]
 34%|████████████▋                         | 4.19M/12.5M [00:02<00:11, 692kB/s]
 34%|█████████████                         | 4.28M/12.5M [00:03<00:11, 707kB/s]
 35%|█████████████▎                        | 4.39M/12.5M [00:03<00:10, 758kB/s]
 36%|█████████████▊                        | 4.55M/12.5M [00:03<00:08, 921kB/s]
 37%|██████████████▏                       | 4.67M/12.5M [00:03<00:10, 744kB/s]
 38%|██████████████▍                       | 4.76M/12.5M [00:03<00:10, 753kB/s]
 39%|██████████████▊                       | 4.85M/12.5M [00:04<00:15, 478kB/s]
 41%|███████████████▌                      | 5.12M/12.5M [00:04<00:10, 736kB/s]
 42%|███████████████▊                      | 5.22M/12.5M [00:04<00:09, 733kB/s]
 42%|████████████████▏                     | 5.31M/12.5M [00:04<00:10, 699kB/s]
 43%|████████████████▍                     | 5.41M/12.5M [00:04<00:10, 695kB/s]
 44%|████████████████▊                     | 5.51M/12.5M [00:04<00:09, 763kB/s]
 45%|█████████████████                     | 5.61M/12.5M [00:04<00:08, 788kB/s]
 46%|█████████████████▎                    | 5.70M/12.5M [00:05<00:08, 772kB/s]
 46%|█████████████████▌                    | 5.78M/12.5M [00:05<00:08, 779kB/s]
 47%|█████████████████▉                    | 5.88M/12.5M [00:05<00:08, 810kB/s]
 48%|██████████████████▎                   | 6.01M/12.5M [00:05<00:07, 877kB/s]
 50%|██████████████████▎                  | 6.18M/12.5M [00:05<00:05, 1.06MB/s]
 51%|██████████████████▋                  | 6.31M/12.5M [00:05<00:05, 1.09MB/s]
 51%|███████████████████                  | 6.43M/12.5M [00:05<00:06, 1.00MB/s]
 52%|███████████████████▊                  | 6.53M/12.5M [00:05<00:06, 928kB/s]
 53%|████████████████████▏                 | 6.63M/12.5M [00:05<00:06, 942kB/s]
 54%|████████████████████▌                 | 6.74M/12.5M [00:06<00:06, 954kB/s]
 55%|████████████████████▎                | 6.87M/12.5M [00:06<00:05, 1.03MB/s]
 56%|████████████████████▋                | 6.98M/12.5M [00:06<00:05, 1.04MB/s]
 57%|█████████████████████▏               | 7.14M/12.5M [00:06<00:04, 1.08MB/s]
 58%|█████████████████████▍               | 7.25M/12.5M [00:06<00:05, 1.03MB/s]
 60%|██████████████████████▏              | 7.50M/12.5M [00:06<00:03, 1.35MB/s]
 62%|██████████████████████▊              | 7.71M/12.5M [00:06<00:03, 1.53MB/s]
 63%|███████████████████████▎             | 7.87M/12.5M [00:06<00:03, 1.27MB/s]
 64%|███████████████████████▋             | 8.00M/12.5M [00:07<00:03, 1.15MB/s]
 65%|████████████████████████▏            | 8.16M/12.5M [00:07<00:03, 1.24MB/s]
 67%|████████████████████████▋            | 8.34M/12.5M [00:07<00:02, 1.38MB/s]
 68%|█████████████████████████▏           | 8.49M/12.5M [00:07<00:02, 1.36MB/s]
 69%|█████████████████████████▌           | 8.63M/12.5M [00:07<00:02, 1.29MB/s]
 70%|█████████████████████████▉           | 8.77M/12.5M [00:07<00:03, 1.18MB/s]
 71%|███████████████████████████           | 8.89M/12.5M [00:07<00:03, 987kB/s]
 73%|██████████████████████████▉          | 9.10M/12.5M [00:07<00:02, 1.18MB/s]
 74%|███████████████████████████▎         | 9.22M/12.5M [00:08<00:02, 1.18MB/s]
 75%|███████████████████████████▋         | 9.35M/12.5M [00:08<00:02, 1.10MB/s]
 76%|████████████████████████████▏        | 9.52M/12.5M [00:08<00:02, 1.22MB/s]
 77%|████████████████████████████▌        | 9.65M/12.5M [00:08<00:02, 1.24MB/s]
 78%|████████████████████████████▉        | 9.78M/12.5M [00:08<00:02, 1.15MB/s]
 80%|█████████████████████████████▍       | 9.93M/12.5M [00:08<00:02, 1.25MB/s]
 81%|█████████████████████████████▉       | 10.1M/12.5M [00:08<00:01, 1.36MB/s]
 82%|██████████████████████████████▎      | 10.2M/12.5M [00:08<00:01, 1.38MB/s]
 83%|██████████████████████████████▊      | 10.4M/12.5M [00:08<00:01, 1.39MB/s]
 84%|███████████████████████████████▏     | 10.5M/12.5M [00:09<00:01, 1.33MB/s]
 85%|███████████████████████████████▌     | 10.7M/12.5M [00:09<00:01, 1.32MB/s]
 87%|████████████████████████████████     | 10.8M/12.5M [00:09<00:01, 1.33MB/s]
 88%|████████████████████████████████▍    | 10.9M/12.5M [00:09<00:01, 1.06MB/s]
 89%|████████████████████████████████▊    | 11.1M/12.5M [00:09<00:01, 1.08MB/s]
 89%|█████████████████████████████████    | 11.2M/12.5M [00:09<00:01, 1.07MB/s]
 90%|█████████████████████████████████▍   | 11.3M/12.5M [00:09<00:01, 1.10MB/s]
 91%|█████████████████████████████████▊   | 11.4M/12.5M [00:09<00:00, 1.09MB/s]
 93%|██████████████████████████████████▎  | 11.6M/12.5M [00:10<00:00, 1.24MB/s]
 94%|██████████████████████████████████▊  | 11.7M/12.5M [00:10<00:00, 1.32MB/s]
 95%|███████████████████████████████████▏ | 11.9M/12.5M [00:10<00:00, 1.27MB/s]
 96%|████████████████████████████████████▌ | 12.0M/12.5M [00:10<00:00, 846kB/s]
 97%|████████████████████████████████████▊ | 12.1M/12.5M [00:10<00:00, 891kB/s]
 98%|████████████████████████████████████▍| 12.3M/12.5M [00:10<00:00, 1.06MB/s]
100%|████████████████████████████████████▊| 12.4M/12.5M [00:10<00:00, 1.08MB/s]
  0%|                                              | 0.00/12.5M [00:00<?, ?B/s]
100%|█████████████████████████████████████| 12.5M/12.5M [00:00<00:00, 37.4GB/s]
WARNING | Hyperspy | This file contains a signal provided by the pyxem Python package that is not currently installed. The signal will be loaded into a generic HyperSpy signal. Consider installing pyxem to load this dataset into its original signal class. (hyperspy.io:949)
WARNING | Hyperspy | `signal_type='electron_diffraction'` not understood. See `hs.print_known_signal_types()` for a list of installed signal types or https://github.com/hyperspy/hyperspy-extensions-list for the list of all hyperspy extensions providing signals. (hyperspy.io:893)

<Signal2D, title: , dimensions: (246, 246|8, 8)>

Display the dataset

data.plot()
  • smallPtychography Navigator
  • smallPtychography Signal
WARNING | Hyperspy | Numba is not installed, falling back to non-accelerated implementation. (hyperspy.decorators:256)
WARNING | Hyperspy | Numba is not installed, falling back to non-accelerated implementation. (hyperspy.decorators:256)
WARNING | Hyperspy | Numba is not installed, falling back to non-accelerated implementation. (hyperspy.decorators:256)
WARNING | Hyperspy | Numba is not installed, falling back to non-accelerated implementation. (hyperspy.decorators:256)
WARNING | Hyperspy | Numba is not installed, falling back to non-accelerated implementation. (hyperspy.decorators:256)
WARNING | Hyperspy | Numba is not installed, falling back to non-accelerated implementation. (hyperspy.decorators:256)
WARNING | Hyperspy | Numba is not installed, falling back to non-accelerated implementation. (hyperspy.decorators:256)
WARNING | Hyperspy | `signal_type='electron_diffraction'` not understood. See `hs.print_known_signal_types()` for a list of installed signal types or https://github.com/hyperspy/hyperspy-extensions-list for the list of all hyperspy extensions providing signals. (hyperspy.io:893)
WARNING | Hyperspy | `signal_type='electron_diffraction'` not understood. See `hs.print_known_signal_types()` for a list of installed signal types or https://github.com/hyperspy/hyperspy-extensions-list for the list of all hyperspy extensions providing signals. (hyperspy.io:893)

Total running time of the script: (0 minutes 37.142 seconds)

Gallery generated by Sphinx-Gallery